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Abstract— This paper introduces a mixed-integer linear pro-
gramming (MILP) optimization scheme aimed at cost opti-
mization in Energy Communities through the coordination
of prosumers’ Battery Energy Storage Systems (BESS) and
Thermostatically Controlled Loads (TCLs). Inspired by recent
guidelines from the Italian Gestore dei Mercati Energetici, we
first introduce the concept of shared energy. Shared energy is
defined as the minimum value, over a specified time window,
between the renewable energy injected into the grid and the
total energy consumed by the community. Subsequently, we
formulate the coordination problem as a MILP optimization,
where the degrees of freedom include the TCLs’ status and
the BESS’s State-of-Charge. The effectiveness and performance
of the proposed formulation are evaluated through numerical
simulations, demonstrating the advantages of the coordinated
scheme over uncoordinated ones.

Index Terms— Energy Communities, Shared Energy, Battery
Energy Storage Systems, Thermostatically Control Loads, Net-
work Coordination.

I. INTRODUCTION

An energy community can be defined as an arrangement
of entities (called “agents”) connected to the same power
network. An agent can be a regular user of the network
(i.e. a consumer) or, in a wider and more general setting,
it can produce, store and sell energy to the network. From
this perspective, an agent is commonly called prosumer. In
particular, a renewable energy community is an energy com-
munity with agents or prosumers equipped with renewable
generation capabilities [1].

In a renewable energy community, the behaviour or ac-
tivity of each agent can be different. On one hand, they
can participate in an uncoordinated fashion, only pursuing
an individual benefit (i.e. reducing consumption, store or
eventually sell surplus power). On the other hand, a more
interesting possibility is that every agent in the community
operates in a coordinated fashion. In this sense, a common
objective is considered and a global benefit is preferred and
pursued [2], [3].

In a community with such a coordinated operation sce-
nario, it arises the concept of “shared energy” among agents
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of the same community [4], [5], according to the incentive
scheme which has been adopted in Italy for renewable energy
communities since 2020 [6], [7]. The main idea is basically
that each agent can take advantage of the renewable energy
generated by any other prosumer. Formally, the shared energy
is defined as the minimum, over a given time window,
between the energy injected into the grid and the energy
consumed by the agents.

Given a renewable energy community, obtaining an ac-
curate coordination of each prosumer behavior is specially
important [8]. In particular, minimizing costs while maximiz-
ing the shared energy within the community is particularly
interesting as it yields the maximal economic reward for the
whole energy community. The possibility of shifting in time
the load consumption is a useful degree of freedom to further
reduce the costs, and the coordination of thermostatically
controlled loads has already proven to be of great potential
impact importance in this regard and also on power peak
reduction [9], [10], [11], [12], [13]. It is worth stressing
that centralized and decentralized strategies also need to
address security, resiliency, and privacy concerns [14]. In
this framework, this paper presents a centralized optimization
proposal, intended to reduce the overall energy cost for
the community over a given time window. This objective
is achieved by coordinating the thermostatically controlled
loads and energy storage and usage, considering costs and
maximizing the shared energy, which represents a reward for
the community.

In the next section, the mathematical model for each
prosumer of the energy community is presented. Also, the
main decision variables and constraints are defined. Lastly,
the objective function is set and the resulting optimization
problem is stated. In Section III a Mixed-Integer Linear
Problem (MILP) formulation of the problem is derived and
in Section IV some numerical results are presented. Finally,
in Section V concluding remarks and perspectives for future
extensions of the presented results are given.

II. MODEL OF THE ENERGY COMMUNITY

The general energy community consists of n ∈ N intercon-
nected prosumers which may, as mentioned before, consume
power, produce power thanks to a renewable generator (RG),
and store energy thanks to a Battery Energy Storage System
(BESS) (Fig. 1). Thus, the state xi(t) ∈ R3 of each prosumer
i = 1, . . . , n is given by

xi(t) =

ci(t)gi(t)
ei(t)

 ,



Fig. 1: Model of energy flow of a prosumer in an energy community

where

• ci(t) denotes the power consumption (kW);
• gi(t) denotes the power generation (kW);
• ei(t) denotes the energy storage (kWh).

Consumption: The power consumption of each prosumer
ci(t) could be divided into two components cci (t) and cni (t),
representing controllable and non-controllable portions of
consumption, respectively,

ci(t) = cci (t) + cni (t), (1)

The controllable portion of power consumption is assumed
to be a Thermostatically Controlled Load (TCL), i.e.:

cci (t) = P TCL
i δi(t), (2)

where P TCL
i is the power consumption of the TCL and δi(t)

is a boolean variable to set the TCL on and off. A simple first
order model for a generic TCL considered for each prosumer
is as follows [15]:

CTCL
i

d

dt
Θi(t) = ζiP

TCL
i δi(t)−RTCL

i

(
Θi(t)−ΘAMB

i

)
, (3)

where Θi(t) and ΘAMB
i are the TCL and ambient tempera-

ture, CTCL
i and RTCL

i are the thermal capacity and resistance,
respectively. Lastly ζi is the TCL efficiency.

Generation: The RG’s generated power is denoted by
gi(t), and it is considered as non-controllable.

Storage: The model for the BESS is drawn from [16,
Section III-A] and reads as

eMAX
i

d

dt
εi(t) = ηiri(t)− di(t), (4)

where i = 1, . . . , n denotes different BESSs in the network.
The other variables are introduced next:

• eMAX
i represents the maximum energy storage capacity.

• εi(t) = ei(t)/e
MAX
i ∈ [0, 1] represents state of charge

(SoC).
• ri(t), di(t) denotes the recharching/discharging power;

we assume that if ri(t) > 0 then di(t) = 0 and vice
versa.

• ηi ∈ [0, 1] represents the round trip efficiency (RTE),
i.e., the ratio between the energy supplied to the storage
system and the energy retrieved from it.

A. Sampling and horizon time window

Consider a sampling time ∆ measured in seconds [s]
and a receding horizon time window H = T∆, where
T ∈ N denote the number of samples within the horizon. For
instance, if ∆ = 60 then ∆ is one minute, if H = 24 · 3600
then H is one day, and consequently one has T = 1440
samples within the horizon. Thus, we consider discretized
time steps tk = k∆ with k ∈ N. With this notation, given a
quantity qi(t) ∈ R, we define by qi(k, T ) ∈ RT the samples
of qi(t) from tk to tk+T−1,

qi(k, T ) =


qi(tk)

qi(tk+1)
...

qi(tk+T−2)
qi(tk+T−1)

 , with tk = k∆.

B. Local Constraints

Decision Variables: The decision variables ri(k, T ),
di(k, T ), pi(k, T ) of each prosumer are subject to the next
bounds

0 ≤ ri(k, T ) ≤ rMAX
i 1,

0 ≤ di(k, T ) ≤ dMAX
i 1.

(5)

ρi(k, T ) = ri(k, T )− di(k, T ). (6)

where ρi(k, T ) is the exchange power to charge or discharge
the battery and rMAX

i , dMAX
i represent the maximum allowable

recharge and discharge power of each BESS, respectively.
Consumption: Let us denote by bi and si the total power

transferred from and to the grid, respectively. Formally we
have

fi(k, T ) = ci(k, T )− gi(k, T ) + ρi(k, T ),

bi(k, T ) = max{fi(k, T ),0},
si(k, T ) = max{−fi(k, T ),0}.

(7)

In residential loads, these total powers are limited due to
the installed infrastructure, thus we include the following
constraints:

0 ≤ bi(k, T ) ≤ bMAX
i 1,

0 ≤ si(k, T ) ≤ sMAX
i 1,

(8)

where bMAX
i and sMAX

i are the upper bounds of the residential
load power transfer from and to the grid, respectively. More-
over, letting ĉi(k, T ) the estimation of the non-controllable
power consumption of the user, we include the following
constraint

cni (k, T ) = ĉi(k, T ). (9)

Clearly, to make the above constraints feasible, it must hold
that ĉi(k, T ) ≤ b̄MAX

i 1.
Regarding the TCLs, the temperature must remain within

the values set up by each prosumer:

ΘMIN
i 1 ≤ Θi(k, T ) ≤ ΘMAX

i 1, (10)

where ΘMIN
i and ΘMAX

i represent the minimum and maximum
allowable temperature of each TCL, respectively. The linear



model of the physical relation in eq. (3) can be approximated
with these set of constraints:

DΘ
i Θi(k, T )− e1e

−αi∆Θi(tk−1) =
(
1− e−αi∆

)
ΘAMB

i

+
(
1− e−αi∆

)
ζiR

TCL
i P TCL

i δi(k, T ) (11)

where e1 ∈ RT is a vector with all the elements equal to 0,
except of the first element that is equal to 1. On the other
hand αi = 1/RTCL

i CTCL
i and the matrix DΘ

i ∈ RT×T is
given by

DΘ
i =


1 0 · · · · · · 0

−e−αi∆ 1 0 · · · 0
...

. . . . . . . . .
...

0 0
. . . . . . 0

0 · · · 0 −e−αi∆ 1

 .

We note that Θi(tk−1) is the TCL temperature at time tk−1,
i.e. the initial temperature at k time window.

Generation: We consider that the estimation ĝi(k, T ) of
the power generated by the RG is satisfactorily precise,
which yields to the following constraint

gi(k, T ) = ĝi(k, T ). (12)

Storage: The SoC of each BESSs must remain in the
bound stated by their manufacturing companies, thus

εMIN
i 1 ≤ εi(k, T ) ≤ εMAX

i 1, (13)

where εMIN
i and εMAX

i represent the minimum and the maxi-
mum allowable SoC, respectively. The relation between SoC
and the power limits must follow the logic that the maximum
amount of power flowing from/to the battery is directly
tied to the battery’s level of charge. More precisely, the
maximum recharge power decreases as the battery’s charge
level increases, up to 0 when the battery is fully charged,
and the maximum discharge power decreases as the battery’s
charge level decreases, up to 0 when the battery is fully
discharged. We model this relation through the following set
of constraints

ri(k, T ) ≤ mr
i · (εMAX

i 1− εi(k, T )),

di(k, T ) ≤ md
i · (εi(k, T )− εMIN

i 1),
(14)

where mr
i ,m

d
i ≥ 0 are the slopes of the power limits on

recharge and discharge, respectively. Figure 2 shows the
feasible region delimited by these constraints.

We now approximate the physical relation in eq. (4) be-
tween the SoC and the decision variables with the following
set of constraints:
eMAX
i

∆
(Dεεi(k, T )− e1εi(tk−1)) = ηiri(k, T )− di(k, T ),

(15)
where the matrix Dε ∈ RT×T is given by

Dε =


1 0 · · · · · · 0
−1 1 0 · · · 0

...
. . . . . . . . .

...

0 0
. . . . . . 0

0 · · · 0 −1 1

 .

Fig. 2: Feasible region described by the kinetic battery model.

Note that εi(tk−1) stands for the state of charge at time tk−1.
This is necessary to enable the approximated computation of
the SoC’s derivative at time tk.

Coupling constraints A large number of BESSs increases
the potential short-term load variations of residential cus-
tomers, posing a potential threat to the stability of the power
distribution infrastructure. Specifically, to prevent overloads
in high voltage substations, the following coupling con-
straints need to be satisfied:

n∑
i=1

[ρi(k, T ) + ci(k, T )− gi(k, T )] ≥ −LMAX1,

n∑
i=1

[ρi(k, T ) + ci(k, T )− gi(k, T )] ≤ LMAX1,

(16)

where LMAX is the maximum allowable power transfer at the
substation.

C. Shared energy

We now introduce the concept of ’shared energy’, defined
as the minimum, over a specified window of time W = Υ∆
with Υ ∈ N, between the energy injected into the grid and
the energy withdrawn from the grid by the users. These two
quantities over a window of time W = Υ∆ at time tk are
given by

Si(k,Υ) = ∆

[
1⊤si(k,Υ− mod(k,Υ))
1⊤si(⌈k/Υ⌉Υ,mod(k,Υ))

]
,

Bi(k,Υ) = ∆

[
1⊤bi(k,Υ− mod(k,Υ))
1⊤bi(⌈k/Υ⌉Υ,mod(k,Υ))

]
.

Note that if k corresponds to an instant of time where a
window W starts, i.e., mod(k,Υ) = 0, then Si(k,Υ) =
∆1⊤

Υsi(k,Υ) ∈ R. If instead, k falls within a time window
W , i.e., mod(k,Υ) ̸= 0, then Si(k,Υ) ∈ R2 has two
components, one summing the energy in the remaining part
of the current window W , and one summing the energy in a
fraction of the next window W . The same holds for Bi(k,Υ).

We can now extend this concept over the whole horizon
time window H = T∆ such that it contains a positive integer



number h of pricing windows W , namely

T/Υ = h > 1.

Then, we can also define

Si(k, h,Υ) = ∆

 1⊤si(k,Υ− mod(k,Υ))
(Ih−1 ⊗ 1⊤

Υ)si(⌈(k + 1)/Υ⌉Υ, (h− 1)Υ)
1⊤si((⌈k/Υ⌉+ h− 1)Υ,mod(k,Υ))

 ,

Bi(k, h,Υ) = ∆

 1⊤bi(k,Υ− mod(k,Υ))
(Ih−1 ⊗ 1⊤

Υ)bi(⌈(k + 1)/Υ⌉Υ, (h− 1)Υ)
1⊤bi((⌈k/Υ⌉+ h− 1)Υ,mod(k,Υ))

 .

(17)

A graphical example of the construction of these two
vectors is presented in Figure 3. Each element is basically
the area under the curve fi(k, T ) within the corresponding
pricing window W . Note that if mod(k,Υ) = 0, the last
element becomes zero, but can be greater than zero for any
other value for mod(k,Υ) ∈ [1; Υ− 1]. For this is that both
vectors require h+ 1 elements.

Fig. 3: Energy computation example, for different k values (h = 7,
Υ = 5, T = 35)

With this notation, we can formally define the shared
energy as follows

Esh(k, h,Υ) = min

{
n∑

i=1

Si(k, h,Υ),
n∑

i=1

Bi(k, h,Υ)

}
∈ Rh+1,

where the minimum operation has to be intended component-
wise.

D. Objective Function

Consider a generic discrete time tk = k∆ where ∆ is the
sampling time and let H = T∆ be the horizon time window.
Assume that the reward for the shared energy is determined
over periods of time W = Υ∆ and assume that the energy
price is determined over the same periods, such that

T/Υ = h > 1.

where h ∈ N. We define now the vector vi(k, T ) ∈ R4T of
main decision variables for each user as

vi(k, T ) =


ri(k, T )
di(k, T )
ρi(k, T )
δi(k, T )

 , (18)

and the vector of decision variables for the whole community
as:

v(k, T ) =


v1(k, T )
v2(k, T )

...
vn(k, T )

 ∈ R4nT . (19)

In order to maximize the shared energy, the objective func-
tion can be formulated as:

J(v(k, T )) = p⊤e

n∑
i=1

Bi(k, h,Υ)−

− p⊤sh min

{
n∑

i=1

Si(k, h,Υ),

n∑
i=1

Bi(k, h,Υ)

}
︸ ︷︷ ︸

Esh(k,h,Υ)

(20)

and the following minimization problem has to be solved:

min
v(k,T )

J(v(k, T ))

subj. to eqs.(5), (6), (7), (8), (10),
(11), (13), (14), (15), (16)

(21)

where
• Bi(k, h,Υ) is the energy bought by the i-th prosumer;
• pe is the energy price in C/kWh in each time window;
• Esh(k, h,Υ) is the shared energy in the community;
• psh is the economic reward in C/kWh for the shared

energy in each time window;

III. MIXED-INTEGER LINEAR PROGRAMMING

The objective function presented in eq. 20 it is nonlinear
and non smooth, due to the presence of the min(·) function
for the computation of the shared energy and the compu-
tation of the powers bi(k, T ) and si(k, T ) in eq. 7. These
non linearity can be overcome by rearranging the problem
through the incorporation of new decision variables.

Firstly, the min(·) associated to the shared energy com-
putation can be solved considering Esh(k, h,Υ) a set of
h + 1 decision variables and considering these couple of
constraints:

−
n∑

i=1

Si(k, h,Υ) + Esh(k, h,Υ) ≤ 0, (22)

−
n∑

i=1

Bi(k, h,Υ) + Esh(k, h,Υ) ≤ 0, (23)

Secondly, consider the energy computation in eq. (17).
This vectors can be computed as:

Bi(k, h,Υ) = ∆ ·AE(k) · bi(k, T ), (24)

where AE(k) ∈ R(h+1)×T is a matrix computed as follows:

AE(k) = Ah · Lmod(k,Υ)
T+Υ · I(T+Υ)×T (25)

and LT+Υ ∈ R(T+Υ)×(T+Υ) is a lower shift matrix, i.e.
Lij = δi,j+1 with δi,j the Kronecker delta. On the other
hand:

Ah = Ih+1 ⊗ 1⊤
Υ ∈ R(h+1)×T (26)



Finally I(T+Υ)×T is a non square matrix as follows:

I(T+Υ)×T =

[
IT

0Υ×T

]
. (27)

It is important to notice that there are Υ different matrices
AE(k). Then, considering that:

si(k, T ) = bi(k, T )− fi(k, T ), (28)

and then:

Si(k, h,Υ) = ∆ ·AE(k) · (bi(k, T )− fi(k, T )) , (29)

Now, incorporating bi(k, T ) as a decision variable and
given that bi(k, T ) = max (fi(k, T ),0), these couple of
constraints should be incorporated:

bi(k, T ) ≥ fi(k, T ), (30)
bi(k, T ) ≥ 0, (31)

although the second one it is also considered as a lower
bound of bi(k, T ) in eq. (8).

Now, redefining the the decision variables vector as:

ν(k, T ) =


ν1(k, T )
ν2(k, T )

...
νn(k, T )

 ∈ R5nT . (32)

where:

νi(k, T ) =


ri(k, T )
di(k, T )
ρi(k, T )
δi(k, T )
bi(k, T )

 ∈ R5T . (33)

Then, the MILP problem results:

min
ν, Esh

p⊤e ·∆ ·AE(k) ·
∑n

i=1 bi(k, T )−

−p⊤sh · Esh(k, h,Υ)
(34)

subject to variables bounds and all the linear inequality
constraints in eqs. (5), (8), (10), (11), (13), (14), (15), (16),
(22), (23), (30) and the equality constraint in eq. (6).

IV. NUMERICAL SIMULATIONS

In this section, simulations results are presented, showing
the MILP problem minimization in a small set of prosumers.
The obtained results allows to conceptualise the benefits of
sharing energy within a community arrangement.

For the simulations, a six prosumers community is con-
sidered (n = 6). Each prosumer consume energy from the
network and has a BESS and a room temperature control as
a TCL. The receding horizon window H is set to be of half
day, with a sample time ∆ of 15 minutes. This configures the
problem with T = 48, h = 12 and Υ = 4. All the constants
and parameters values for each prosumer are shown in Table
(I). All these values are generic and intended to evaluate
the minimization problem resolution, not a specific practical
representation. In this same sense, a price of 0.15C/kWh
from 6pm to 6am, while a price of 0.195C/kWh from 6am

Parameter Value Parameter Value
rMAX
i 5kW dMAX

i 5kW
bMAX
i 20kW sMAX

i 20kW
ΘMAX

i 20°C ΘMIN
i 18°C

RTCL
i 83.33°C/kW CTCL

i 300kWs/°C
P TCL
i 0.2kW ζi 0.8

εMAX
i 0.9 εMIN

i 0.1
mr

i 50kW md
i 50kW

eMAX
i 20kWh ηi 0.8

TABLE I: Constants and parameters of for simulation

to 6pm are considered. On the other hand, a constant reward
at each hour of 0.07C/kWh is configured.

In the Figure 4, the prosumers non-controllable consump-
tion and generation powers forecasting are depicted. These
profiles are considered to be generated for a higher level
process, and are not subject of analysis in this preliminary
work.

Fig. 4: Prosumers consumption (blue) and generation (orange)

The optimization problem is solved at each k, adjust-
ing each initial prosumer SoC (εi) and room temperature
(Θi) at each step. The MILP problem is solved using the
MATLAB™ function intlinprog. Figure 5 presents the
optimization results for the power bought by each prosumer
(bi) and the recharge (ri) and discharge (di) powers.

It is important to note that in general, each prosumer
recharge the battery at times were some renewable power is
been generated or, if not available, from time instants where
energy cost is lower. Conversely, the batteries are discharge at
moments were no renewable power generations is available
or energy cost is higher. This is consistent with the objective
of reducing the self consumption from the network and
simultaneously ”sharing energy” within the community to



Fig. 5: Prosumers buy (bi), recharge (ri) and discharge (di) powers

reduce the overall cost of the energy. This is particularly
notorious in the last three agents, that do not generate power.
These agents recharge their batteries only at times when the
other three agents generate energy, i.e. taking advantage of
the shared energy.

Following the recharge and discharge profiles defined by
the optimization, Figure 6 presents the SoC of each prosumer

Fig. 6: Prosumers batteries SoC (εi(k, T ))

battery. The gray or shadowed curves are partial results of
the optimization process, In this sense, it can be noted again
how the prosumers take advantage of the shared energy
by recharging the batteries while an excess of renewable
energy is available or while the energy cost is lower. Also,
considering the SoC upper and lower limits constrains, it can
be seen that is fulfilled during all the simulation.

On the other hand, the boolean variable that govern the
TCLs is depicted in Figure 7. The figure demonstrates that,
when renewable energy is available, the TCL are turn on
more frequently in order to better leverage this resource.

Fig. 7: Prosumers TCL boolean variables (δi(k, T ))

Finally, in Figure 8 the TCLs temperatures are shown.
These curves show that the temperature is incremented while
renewable energy is available. In the case of the first three

Fig. 8: Prosumers TCL temperatures (Θi(k, T ))



prosumers, this is more marked, mainly due to the fact that
the optimization problem tend to minimize the bought power
by each prosumer. In the case of the last three prosumers,
while this behaviour is also present, in general tend to keep
the temperature as low as possible, reducing also the bought
power. In the same way that the SoC, the temperature of
each TCL is controlled in a way that it is always within the
minimum and maximum settled values.

In order to compare the advantages of the optimization
and sharing energy through a community, the overall cost
during the three day simulation is computed. In this sense,
the computed overall cost is 92.30C. On the other hand,
in a non collaborative scheme, were no reward is given
for sharing energy, the overall cost result 100.27C. This
means a reduction of cots close to the 10%, only by taking
advantage of sharing energy. On the other hand, in case of no
using batteries to store the surplus energy, the cost becomes
124.79C, representing close to a 25% of cost reduction.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This article address the problem of minimizing the en-
ergy costs for renewable energy communities consisting of
multiple agents that generate, store, and consume energy.
Both storage and power consumption were assumed to be
partially controllable, specifically by allowing the recharge
of the battery directly from the grid and by allowing the
control of TCLs in an on/off scheme. Numerical simulations
for a small community of six agents corroborate the validity
of the formulation, allowing to reduce the energy costs when
an economic reward for the shared energy was provided.
Agents benefitted from the active exploitation of the varying
energy costs throughout the day by storing cheap energy for
use during costly hours. TCLs behaved similarly to batteries,
storing thermal energy during power surpluses. Future works
will focus on the distributed formulation of the problem
presented in this manuscript, as in our preliminary work
[17] where a simpler scenario without TCLs is considered.
In particular, we will investigate how consensus-based algo-
rithms for distributed optimization and online learning [18],
[19], [20], [21], [22], [23] could be exploited to infer global
information useful for the energy community to maximize
the shared energy through the coordination of batteries and
loads.
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